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Abstract

A new type of computational tool under development, employing techniques
of symbolic computation and artificial intelligence to automate as far as
possible the research activities of a human plasma theorist, 1s described. Its
present and potential uses are illustrated using the area of the theory of alpha
particle effects in fusion plasmas as a sample domain.

1. Introduction

Alpha particles may be expected to affect, and be affected by,
tuston plasmas according to a coupled system of mechanisms
mmvolving the heating, equilibrium, transport, and stability of
the plasma. While much of the specifics of this interaction
remains unexplored, the process of expioration will largely
involve bringing to bear theory and concepts developed in
other plasma contexts.

This combination of an unexplored problem domain,
being approached with a collection of related perspectives
and results from a more thoroughly studied area, makes the
alpha-plasma interaction an appropnate test domain for
PAP, an “apprentice” program for plasma theory [l].
Presently at a fairly early stage of implementation, the
general goal of the PAP project is to employ techniques of
symbolic computation and artificial intelhgence to do as
much as possible of the work of a human plasma theorist.
The term “apprentice” ts intended to connote, first of all, that
the performance level of the system is not competetive with
that of a human theorist (at least for the forseeable future),
and also that the system 1s intended to interact with the
human user, informing him of 1ts status and asking him for
turther gmdance when it runs into ditficulty, and to be able
to learn new facts and methods. This paper will describe the
structure of PAP. 1ts present capabihties and some of those
which seem well within reach, and illustrate how such a
faciity could be used by the plasma community in furthering
research 1in a new problem domain such as alpha-plasma
phenomena.

The notion of automating the mental activities of a human
theorist generates (quite understandably) a degree of skepti-
cism in the minds of human theorists, who know how simple-
minded computers are. Two related questions may be asked,
characterizing the nature of this skepticism: (a) Given
present-day Al capabilities, can such a facility be constructed
which 1s actually wseful? (b) Can such a facility actually
generate any theoretical results which are new., without a
simple regurgitation or trivial rearrangement of all the necess-
ary information given to 1t by a human theorist, who has
etftectively already found the result beforehand? In the
remainder of this paper, support will be given for the claim

that the answers to these questions are “yes” and “probably,”
respectively.

Clearly, 1t the answer to question (b) were ““yes,” the
answer to (a) would be “yes™ as well. Additionally, however,
1t 1s important to remember that much of the mental effort of
a human theornist 1s devoted to tasks which, though absolutely
essential to making theoretical progress, are rather mundane
tn nature, having a structure which is fairly clear, and
therefore amenable to machine imitation. Thus, even were the
apprentice unable to do any serious physics calculations
itself, 1t could still be of considerable use performing these
“lower-level” functions (examples of which will be given
shortly).

In support of an athrmative answer to question (b), later
in this paper we will describe in some detail a transport
calculation already carried out by PAP in an almost entirely
automated fashion, in which some nontrivial (though
previously-known) transport results are found.

2. PAP Structure

A schematic depiction of the structure of PAP is shown in
Fig. I. Adopting as a top goal the automation of nontrivial
plasma calculations [achieved by the “‘high-level calculator/
problem-solver” (CALC) in Fig. 1], the lower-level facilities
shown there were automatically required. That is, each of
these facilities is called on by the high-level control structure
In carrying out a calculation, as will be seen. However, as
indicated by the arrows leading from the ““human user™ box
in Fig. 1, each of these facilities may be accessed directly by
the user, and these can be very useful in their own right.

PAP rests on two cornerstones (shown in Fig. 1), on
MACSYMA, and on the PAP *“knowledge base™ (KB).
In addition to giving PAP a serious algebraic capability
(an obvious necessity for doing physics), MACSYMA in
addition contains a full programming language. The
MACYSMA language has a structure quite similar to that of
LISP (an Al standard), in terms of which 1t 1s written, and it
1S easy to call on routines written in one language from the
other. For these reasons, PAP 1s written mostly in
MACSYMA, with a few routines written in LISP.

The other PAP cornerstone 1s 1ts KB. This contains PAP’s
“understanding’” of plasma physics. This includes not only
the important physical quantities, equations, and results of
plasma physics, but also information specifying the relations
among them, and how they are used. In conjunction with the
“low-level calculator/evaluator™ (NUMVAL) indicated in

Fig. I (to be described shortly), a mature version of the KB
would serve a powertul pedagogic and archival function — a
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Fig. 1. Schematic Representation of the structure of PAP.

single, unified, easily updated, quickly-accessed body of
plasma knowledge, which plasma physicists presently must
synthesize from many sources.

At the intermediate level of Fig. 1, calling on the KB
and MACSYMA foundations, are NUMVAL, and a set of
routines enabling PAP to do some of the kinds of heuristic,
qualitative reasontng which is important to the way in which
people understand and communicate physical ideas, and
attempt to solve physics problems. The action ot these facili-
ties will be demonstrated, first through some sample inter-
actions of the human user with PAP, and later in the descrip-
tion of the transport calculation, where CALC calls on them
automatically.

2.1. Use of the KB and NUMV AL

[n addition to direct interrogation of the information in the
KB, a simple but quite useful PAP factlity drawing heavily on
the KB 1s the function NUMVAL. In getting a teel for the size
or importance of physical effects, a theorist ts often called
upon to draw out a set of relevant formulae, and plug in
typical values for the vanables occuring there, or sometimes
to see the scaling of these expressions with important par-
ameters. For example, suppose one wants to know how large
the alpha banana width to system size is, or what a tolerable
ripple ampflitude s 1n some contemplated machine design. If
the expressions to be evaluated are short, and the number of
times they are to be evaluated few, one typically pulls out
ms plasma formulary and a calculator, and spends time
guiding the calculator through a procedure which 1s tedious,
time consuming and error prone. If the calculation 1s more
involved (the above-mentioned example of tolerable nipple
levels already qualifies), one often writes a modest computer
program, whose structure ts clear, but which takes time to
assemble. NUMVAL uses the KB as an on-line formulary,
and given an expression to evaluate, effectively writes the
program the theorist normally writes by hand, accessing the
appropriate formulac in the KB, and performing the evalu-
ation. The following briefly illustrates some uses of the KB

and NUMVAL:
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(C4) get(cit, ‘params);

(D4) [RR = 1.225d+0, A = 0.454d +0, KPELIP = 1.8d+0,
BB = 10.4d+0, QA = 2.5d+0, DENS = 6.5B20,
TTEVI = 7000, TTEVE = 7000, N = 20, DLA =

.5D —02]
(C5) boltzeqa;
(D5) d?l"il THDT + S—E RDT
(a% (AA —3—5)) NUR
AAP
(C6) why(‘boltzega);
(D6) (BOUNCEAVG(BOLTZEQ).
NEGLECT(%, [1]})
(C7) enghshdef(dd);
(D7) [diffusion coeff]
(C8) 1nstances(dd)
(DR8) IDIM = 1d, DDCL, DIM = 2d, DD2D,
DIM = 3d, DD3D]
(C9) instances(ddbd);

(D9) [NUREGIME = [NUN = 0}, DDSTOCH.
NUREGIME = [NUN < FIDT N], DDBDI,
NUREGIME = [FIDT N < NUN, NUN < WB]
DDBDMI, NUREGIME = [WB < NUN],

DDRP]
(C10) enghshdef(ddrp);

(D10) [diffusion coefl, DIM = 3d, MECH = banana
dnft, NUREGIME = [WB < NUN}!

(C11) get(ddrp, ‘givenby);
Evaluation took 0.00 seconds (0.00 elapsed).

DDBP DL N Q SGRP

"

(bThH EPT? SGBP
(C13) numval([ddstoch.ddbd.ddbn],[per(cit,species = alf).
q = 2.r = a/2)):

Evaluation took 50.06 seconds (56.03 clapsed).

2.2709B13 DL’ SGBDI
FVO' TTEV

(D13) [1.6635B7 DL> SGSTOCH.,

4 117B7
TTEvk.:“-dfﬂ

(C15) numval(d13,[ttev = egyevalf,iv0 = |, dl = .01]);
Evaluation took 2.31 seconds (2.53 elapsed).

(1.6635B3 SGSTOCH, 3.4681B— 1 SGBDI .
6.28758 — 3]

(C16) tauconf(dd.a) := a 2/dd;

]

(D15}

A:’
- . A P e
TAUCONE(DD., A) 5D

(C21) opmap(tauconf{dl5,.454),1,1);
Evaluation took 0.43 seconds (0.43 elapsed).

1.2391B —4 5.9432B — |
SGSTOCH™ SGBD!

(D16)

(D21) [

. 3.2782B1]
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(C22) numval([nu,nuslw].[per(cit,species = alf),ttev =

egyevalt});
Evaluation took 20.97 seconds (21.78 elapsed.

(D22) [1.6875B—1, 3.2606B1]

The numbers Ci, D1 appearing on the left are the usual
MACSYMA line numbering. The MACSYMA command
GET(v, p) retrieves property p of variable ». Some of the
types of information in the KB are shown by use of this
command. Thus, in C4, the values of typical parameters for
a given device of interest (in this case, for CIT) are recalled.
In C5-D6, a difterent type of information 1s requested. In
C35, D35, a particular variant (“"boltzeqa™) of the Boltzmann
equation, the one used 1n the transport calculation discussed
later, 1s requested and displayed. In C6 the KB is asked for
a description of the origin of this equation. The response in
D6 15 a sequence of MACSYMA instructions whose which
represents a derivation of boltega from the full Boltzmann
equation. It may be read in English as “First, bounce average
the Boltzmann equation. In the result of this, neglect the first
term. The result is boltzega.” In a fashion illustrated by this
simple example, a novice 1n some area of plasma theory
could, by stepping through the “‘derivation networks” which
tie together the important equations of that area in a mature
version of the KB, teach himself the structure of the theory
of that area.

In C7-D7 and C10-D10, the user requests a definition of
two symbols whose meaning he does not know, using the
command ENGLISHDEF. The symbol “*dd” (double letters
are conventionally used when the corresponding mathemat-
ical symbol 1s upper case) stands for the general term ““dif-
fusion coefthicient.” Having found this general term, in C8,
DS, the user asks what spectal instances of this term are
known to PAP. Within the KB, dd represents the top node of
an “‘inheritance network”’, a conceptual hierarchy, where the
lower-level nodes represent more concrete versions of the
higher-level ones. This 1s tllustrated in Fig. 2 for the particular

Fig. 2. Depiction of an “inhentance network™ for plasma transport results.
Deeper nodes are more specific instances of the higher nodes. The labels on
the connecting arcs describe the nature of the particular specialization.

135

concept of diftusion coethcients. Such networks are very
useful organizing structures in the KB. The labels on the arcs
of the network in Fig. 2 are the “qualifiers,” indicating the
specializing assumption(s) made to move from the more
general to the more specific concept. The form of the response
D8, 9 to the INSTANCES requests i1s [qualifierl,symboll,
quahfier2,symbol2, . . . . ], giving all the special cases
symbol(1) of the “parent” concept, preceded by thge quali-
fier(t) connecting the parent to the symbol. Thus, it gives a
“honizontal shice” of the tree shown in Fig. 2. The response
D10 to the ENGLISHDEF request gives a “vertical slice”,
ltsting the path of qualifiers connecting the specified variable
(1n this case, the ripple-plateau coefficient D) to the top-level
concept. Paraphrasing D10, “D_ 1s that diffuston coefficient
ansing from the banana-dnift branch of the several 3-D trans-
port mechamisms which exist, in the collisionality regime
w, < v,. InCl1, the user asks for the algebraic form of D, .
Interrogating the KB 1n this fashion, a theorist can aquaint
himself with the known transport mechanisms, what the
assumptions are for their validity, and what their algebraic
form 1s.

In C13, the user requests a numerical evaluation of three
diffusion coefficients he considers of possible relevance to
alpha transport (those of the stochastic-regime D, [2], the
“precession-dominant” banana-drift regime Dy, [3], and the
axisymmetric banana regime D,  [4]), using the function call
NUMVAL (expr,parmvals). The first argument (expr) 1s the
object whose numerical evaluation is sought, and may be a
variable, any algebraic expression, or a list of such expres-
sions. The second argument (parmvals) is a hist specifying the
values of parameters which are to be assumed in the evalua-
tion. Thus, one may paraphrase C13 as ““numerically evaluate
the list [ D, oon, Dot » P ], assuming g = 2, r = a/2, and other-
wise for CI'T parameters, for alphas.” The Latin work “‘per”
1s used for the moment because “‘for’ is a special word to the
MACSYMA reader. The 1tems inside the ““per’-construct in
C13 are used to set the “‘computational context” within
which the evaluation i1s carried out [1].

The evaluation process NUMVAL uses may be clanfied
by the following trace of NUMVAL apphed to the electron
cyclotron frequency wee in TFTR:

(C4) numval(wce,[per(tfir)]);
| Enter NUMVALL [[WCE, [ ]]]

B
2 Enter NUMVALIL {| ;ﬁc, ISPECIES = ELEC]]]

3 Enter NUMVALTL [[BB, [SPECIES = ELEC]]]
4 Enter NUMVALI [[5, (SPECIES = ELEC]]]
4 Exit NUMVALL [5, | ]]
[Heap grown by CONS: 747392 — 772992, free = 681471}
3 Exit NUMVALIL [5, [ ]]
3 Enter NUMVALI [[EC, [SPECIES = ELEC]]]
4 Enter NUMVALI [{1.6B-19, [ |]]
4 Exit NUMVALL [1.6B-19, | ]]
3 kExit NUMVALI {1.6B-19, { ]]
3 Enter NUMVALL [[MM, [SPECIES = ELEC]]]
4 Enter NUMVALI [[9.11B-31, [ ]]]
4 Exit NUMVALL [9.11B-31, [ ]]
3 Exit NUMVALI [9.11B-31, [ ]]
2 Exit NUMVALL [8.7815B11, [SPECIES = ELEC]]
I Exit NUMVALL [8.7815B11, [SPECIES = ELEC]]
(D4) 8.7815B11
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As shown here, the evaluation process is basically handled
recursively by tunction calls NUMVALI(jexpr,cmpentxt]),
where expr has the same meaning as for NUMVAL, and
cmpcntxt 1s the computational context. At the level-1 call,
to NUMVALI([wce, . . ]), PAP looks to see if it has an
approximate formula or value, first in parmvals, and if not,
in the KB. In the KB, 1t finds nothing under the *“givenby”
property of wce, and so examines wce’s inheritance-network
connections to see if wce 1S a special case of some symbol
for which a formula 1s given. There, it finds the symbol
we, given-by formula eB/M, and so, at level 2, embarks
on evaluating this, with cmpentxt expanded to remember that
the evaluation 1s to be for electrons. To evaluate this
compound expression, NUMVAL first recursively evaluates
cach of the symbols in the expression, and then substitutes the
resultant values into the expression. During the evaluation
of each symbol, an attempt 1s made to specialize the symbol
as far as cmpentxt indicates (ct., e.g., the evaluations of ec
and mm).

When none of the specihied information allows PAP to
numerically evaluate a symbol, 1t returns the symbol itself.
This provides a convenient way to determine the parametric
scaling of some expression with important parameters. This
llustrated in D13, where, for example, the magnetic ripple-
strength o (dl) has been left unspecihied, and one sees the
quadratic scaling of the two nipple-transport coethcients with
0. If desired, as in C15, D15, these parameters may then be
given values, and the expression further evaluated, with only
a small additional cost in time. In C16, a simple MACSYMA
function is defined for the purpose of converting the values of
the diffusion coeflicients in D15 into conhinement times, and
tn C21, this function 1s mapped onto the three D’s in that list.
Because from D21 D, » Dy, foralphas in CIT, it is D,
of the banana-drift “branch” of transport coefficients which
will apply (this may also be checked, using other NUMVAL
calls, on the qualifiers giving the collisionality boundaries
previously seen using INSTANCES and ENGLISHDEF),
and one sees that the assumed value 0 = 0.01 yields an alpha
confinement time which is much too small. A firmer meaning
1S given to the term “‘too small” in C22, D22, where the
slowing-down frequency (nuslw = 1/t,.) is evaluated. (The
90-degree scattering frequency nu (= v) is also evaluated, just
for comparison.) Using the numbers in D22 and D21, and
imposing the usual condition that z,_ > 1, for acceptable
alpha-confiinement, one 1s lead to an estimate of a tolerable
ripple size & < 0.06% halfway out in CIT.

Thus, using less than two minutes of computer time,
having had to i1ssue only a few one-line commands tn the
sequence C13--D22 one has been able to answer a question
of some interest to alpha transport. The result is guaranteed
to be algebraically and numerically correct, the only possi-
bilities for error being an incorrect formula being entered by
the person/people who wrote the KB, or a4 misinterpretation
of the meaning of the numbers being generated on the part of
the user. I 1s easy to ask PAP to “show its work™ after a call
to NUMVAL. The time and error-saving utility of the facility
would be still greater were one interested in several different
sets of CIT parameters. or several different machines.

3. Qualitative and heuristic reasoning

When analyzing and talking about physics problems, physi-
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cists frequently engage in various types of “heuristic” or
“qualitative” reasoning. These heuristic arguments can com-
municate tn a stmple manner what the essential features are
entering into a given physical phenomenon or mathematical
result, providing guidance in the more rigorous and detailed
(and often more obscure) formal derivations which ultimately
provide the solid basis of a physical theory. Giving PAP the
ability to engage in these kinds of heuristic reasoning is
important, in order for it to be able to derive the same benefits
for problem solving as its human practitioners do, and to be
able to “understand’ in an efficient manner arguments com-
muntcated to it by a human user. In this section we discuss
three facilities developed to give PAP this kind of capability.
These will also be helpful in understanding the subsequent
discussion of the automated transport calculation.

3.1. HEURMAP

Often, 1n a prehkminary analysis of the sorts of solutions one
may expect from a given differential equation, one maps the
equation into a simpler one by, for example, replacing a
complicated function by a simpler one which reflects the
rough behavior of the function, or by replacing the deriva-
tives appearing in the original equation by characteristic scale
lengths over which the functions on which the derivatives act
vary. HEURMAP (for “HEURIistic MAPping’’) is a function
which gives PAP this kind of ability. Here, we illustrate
HEURMAP by some user-directed examples:

(C3) ballooneq;

, dU dP
K* — 2 K KP—V
(D3) d ( dS ) 4 dR 0
dS " BB BB B
(C4) [any.s.1/(g*rr)any.r.1/al;
| 1
D4 ANY, S, . ANY, R, —
(D4 [ANY. S, 5pm. ANY, R 7]
(C5) heurmap(d3,d4);
. 6 K-V 2K°KPPV
D5 5 =
D gsore T TABE
(C6) subst(p =beta*bb 2,d5):;
6 K-V 2 BETA K°KPV
D 3 I =
B0 grorre * A BB 0
(C7) solve(d6,beta);
3A
7 BETA = - i
(D7) BETA KP Qr RR*]
(C8) diffeql;
dN d dN
D — = — (DD —
(D8) dT dR (D dR)
(C9) [any.t.l/tau,any,r,l/al;
l
(D9) [ANY, T, NI ANY, R, E]
(C10) heurmap(ds.d9);

N | DD N
| ==
(D10) TAU A
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(CHl) solve(d10.tau);

AI
3 DD

In C3,D3 above, we introduce a slightly ssmplified version
of the ballooning equation [5]. The first term represents field
line bending, and the second represents the pressure(p)-
curvature(kp) destabilizing term. The perpendicular displace-
ment is denoted by ». In D4, the “‘replacement list” rplst
1s tntroduced, which determines the mapping to be made
from the derivatives present. rplst runs in segments of three
elements . . ., vs.x.k., . .}, where vs denotes which variables
are affected, x denotes the variable of differentiation, and &,
oives the inverse scale length into which the x-derivative
maps. vs may be either a single varniable, a list ot variables, or
(as tn D4) the wildcard vaniable ““any’. Thus, the first triplet
in D4 means ¢(any)/ds — (any)/gR, 1.e., the usual mapping
one makes in ballooning mode theory that the scale for
variation along a field line 1s the connection length ¢R. By
“any’’ here is meant any variable not known to be independ-
ent of s from other information in the KB. Additionally, the
KB can provide the information for these heuristic mappings,
overridden by the explicit input rplst of D4.

In C5S HEURMAP 15 applied to the ballooning equation,
resulting in D3. The numerical factors are an indication of the
number of separate terms in the differand having nonzero
derivative. Replacing p in favour of beta (f) in D6, in D7
we solve for #, arriving at (up to numerical factors) the
expression for the critical f for ballooning stability.

A similar heuristic analysis 1s made for the diffusion
equation given in D8, using the rplst of D9. Applying
HEURMAP in C10 and solving for tau, in D11 one finds the
usual expression for the characteristic diffusion time.

3.2. The KITO-calculus

Much of the structure of a mathematical problem of pro-
cedure may be outlined without having to do any of the
actual algebra. For example, when setting up a problem, 1t 1s
common to check that the number of governing equations 1s
equal to the number of independent vanables. Another
algebra-free rule of this type 1s exemplified by the logical link
... this gives us the action J as a function of p., p,, and
energy E, which we then invert to give the Hamiltonian
E(J. p.. p.)". The downward-recursing stage of the evalu-
ation procedure described above for NUMVAL is a simple
case of an algebra-free information manipulation of this type.
During that stage. what 1s done 1s to gather the relevant
equations, linked by which equation 1s used to determine
which vanable into a “solution network™, or “‘solution
net”, which then serves as a solution plan used during the
upward-recursing stage, in which the actual algebra 1s done.
The ability to perform this kind of abstract information
bookkeeping and manipulation 1s a ftacitlity now partally
implemented in PAP, referred to as the "KITO” (for “Known-
[n-Terms-Of ")-calculus. The solution networks constructed
by the KITO-calculus function KITOGEN are an important
part of giving PAP a senous capactty tor problem-solving
(6, 7. For most plasma problems, the simple recursive
evaluation procedure used by NUMVAL 1s inadequate. As a
simple example, consider the simple harmonic oscillator
(SHO) equations

(D11) ITAU =

]

cx/ict = pim, Cplit = —k{x — x,). (1)

137

{nd13)
X

N

(ndi4) “~
splvefor{ x} ™~

(nd156) )
m

(ndi18)
solvefor(.p)

N\ [

~
g

—

{nd19) {nd2D)
K x0

Fig. 3. Structure of a simple “'solution network’ for the simple-harmonic
oscillator system of eqs. (!). The main goal [at “root” node (nd13)], the
calculation of x, appears at the top of the network, and subgoals arising from
this main task appear below. The upward directed, dashed lines lead to
subgoals already established at the time of the creation of the parent goal
from which the lines emanate.

The solution network corresponding to this system is shown
in Fig. 3. NUMVAL applied to this system would go into an
infinite loop, because the “‘root node” x of the solution net 1s
an “‘ancestor” {and “‘descendant’) of 1tself, 1.e., the network
IS not a tree.

Solution nets provide a more flexible, human approach to
problem solving than the simple recursive approach of
NUMVAL. The plans they can represent contain the tree-like
networks of strict recursion as a special case, and can be
readily modified when 1t 1s discovered that an inttial plan is
anworkable or infertor to an altered approach. Moreover,
because they provide a record of the solution strategy being
pursued and the status of the solution at any given point in
its execution, they give PAP the potential to “show its work™,
an ability which will be essential for effective interaction with
the user.

Shortly we will illustrate the operation of KITOGEN, but
first 1t is convenient to describe a second facility for qualita-

tive reasoning presently under development, the “Qualitative
SIMulation™ routine QLSIM ..

3.3. OLSIM

Constder the following simple system of equations. modeling
the ignition and thermal runaway or quenching of an alpha-
heated plasma:

T/t = P, — yT. (2a)
P = ol (2b)
Y = Xovs v = vg 1l (2¢)

(The constants ¢, y,, and v, are all assumed positive.)
Equation (2a) states that the plasma temperature 7 becomes
hotter the larger the power P, from the alphas, and colder due
to losses to the wall, the greater the thermal conductivity %,
and the greater 7. Equation (2b) 1s a model of the scaling of
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the fusion cross section with 7. Equations (2¢) model the
scaling of y with collisionality v (vahd, e.g., in the banana
regime), and the inverse dependence of v on T. A qualitative
description of the behavior of the system modeled by these
equations, might be rendered as “Assume P, 1s great enough
that imtially 7T 1s increasing. Then as T increases, v, and
sy, both decrease, thus reducing thermal losses, while P
increases. Both these effects act to further increase T, so T will
increase indefinitely (until the vahdity of the model is viol-
ated)”. A similar description may be given for quenching
behavior, by assuming 67{t = 0)/dt < 0 instead. Though it
s easy enough to explicitly solve this system for 7(¢), the des-
cription just given 1s actually a formal proof of the runaway
behavior, independent of the precise details which make the
model solvable, but depending only on some simple gualita-
tive features of the model, which would apply to a less trac-
table model with the same qualitative properties. QLSIM 1s
a function which attempts this kind of qualitative analysis on
systems of rate equations, i.e. systems of the form 0z'/ot =
v'(z), where z = (z'. 27, . . .)is the set of dynamical variables
', and the ?' are functions of z. Thus, it is apphlicable to
dynamics problems, such as system (1), 10 power-balance
models like system (2), and to models describing a very broad
range of other phenomena. It 1s an extensiton of previous Al
work [8, 9] in “‘qualitative process theory” to quahtatively
reasoning about real systems of equations, instead of about
qualitatively-describing systems.

The following shows a sample PAP protocol (slightly
edited for brevity) illustrating the application of KITOGEN
and QLSIM to systems (1) and (2) above:

(C3) get(x. givenby);
dX P
3 — = —
(D3) dT M
(C4) get(p. gvenby);
dP
4 —_— = —
(D4) o K(X — XO)
(C5) facts(context);
(D5) M > 0O,K > O,SGO > CHIO > O, NUO > O]
(C6) get(tt,’givenby);
dTT
(1D6) — = PP — CHITT
dT
(CY9)  kitogen(tt);
(D9) [DONE, ndkt =, 12]
(C10) wrglb(); ndkt 12
N
eqlst = [PP = SGO TT, NU = - UO
T1
dTT .
CHI = CHIO NU., i PP — CHI TT}
vveer s [SGO, CHIO, NUOJ [T [TT] [CHI,
NU, PP]
(D10) ]
(C11) wrtree('nd.!,inf):

NDI
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TT
[DESCDT, [ND11, ND9], EXNOTES,
[DESCDT, DESCDT], CHLDN, [ND2]]
ND2

dTT
OLVEF
S OR( T

= PP — CHITT, TT)

(C12) genvis( );

(D12) ISGO TT — CHIO NUO]
(C14) qglsim(vvec2,d12,[pos));
I-cycle,zasmpls,sgnasmp = [TT CHIS(()}EUO] [POS]

Evaluation took 6.28 seconds (32.26 elapsed).
(D14) [DONE, gindkt =, 1]

(C15) wrtree('qlnd, 1,inf);
QLNDI

POS]. [TT CHIO NUO

sGo 1
[CHLDN, [QLNDI], PARNT, [QLNDI]]

DONE

(D15)

(C20) kitogen(x);
Evaluation took 6.94 seconds (25.85 elapsed).

(D20)  [DONE, ndkt=, 20]

(C21) wrglb( );
ndkt 20

dP
E:qlst = [“d—,_i: =

vvcel s (M, K, XO] [T] [X, P] [ ]
(D21) [}

(C22) wrtree('nd,13,inf);
NDI3
X
[DESCDT, [ND18], EXNOTES, [DESCDT],
CHLDN. [ND14]]

dX P
~K(X = X0), = = =]

(C23) genvis{ );

P

— . K(X -

[M (X — XO)|
(C24) qlstm(vvce2,d23,[pos.pos));

Evaluation too 18.97 seconds (38.09 elapsed).
(D24) [DONE, gindkt=, 5]

(C25) wrtree('qind.2 inb);
QLND?2
HPOS, POS], [P, XO - X}
[PARNT. [QLNDS5], CHLDN, [QLND3]}
QLND?3
[[POS, NEG], [P, X — XOJ]
ICHLDN, [QLND4], PARNT, [QLND?2]]
QLND4
[INEG, NEG], [—-P, X — XO]]
[CHLDN, [QLNDS3]. PARNT, [QLND3]
QLNDS

(D23)
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[NEG, POS], [- P, XO — X]}
[CHLDN, [QLND?2], PARNT, [QLND4]]

(D25)  DONE

This protocol essentially contains two samples of the
consecutive execution of the PAP functions KITOGEN,
GENVIS, and QLSIM, one sample for system (2), and the
second for system (1), interspersed with the display of diag-
nostic information, for the purposes of demonstration. State-
ments C3-D6 elicit some of the governing equations from the
KB. C5,D5 lists the assumptions MACSYMA makes about
the signs of the parameters in the systems (1, 2).

First, KITOGEN is called on the vanable (tt) of interest
for system (2) in C9, and on x for system (1) in C20. From
this, solution nets are generated, by accessing the KB in a
manner stmilar to that already described for the downward-
recursing portion of NUMVAL. In DY, the number of nodes
(ndkt) in the resultant net 1s given. Two diagnostic functions
(WRGLB and WRTREE) are then called to display the work
KITOGEN has done. WRGLB displays ndkt, then a list
(eqlst) of the equations which the construction of the solution
net has shown are needed for the problem, and finally a par-
titton of the variables involved into four ““vanables classes”
VC. (i = 0--3). This classification, derived from the structure
of the set of equations found to belong in eglst, gives infor-
mation on the role each vanable plays in the problem. V', 1s
the set of constant ““parameters’ in the problem, V', 1s the
set of “‘independent variables™ (t alone, in the case of rate
equations), V', 1s the set of “*dependent”, or “‘dynamical”
variables z' in the problem [tt alone, in the case C10-D10 of
system (2), and (x, p) in C21-D21 for system (1)]. V'C, 1s the
set of symbols which should be regarded as functions of the

!

—

gl

WRTREE then writes out the contents (cf. Cl1, C22) of

the tree or network specified by 1ts arguments. In the case of
C22, 1t 1s asked to write out the contents of nodes ndl3,
ndl4, .. . nd20 which, graphically represented, are just
the network of Fig. 3. Only the first note (nd 13, for x) 1s
shown here, ftor brevity. One sees the ‘“‘self-descendant”
property (descdt) previously described present in this node’s
“execution-notes’” (exnotes).

We return from the diagnostic messages. Before the execu-
tion of QLSIM, the list (vlst) of ¢'s corresponding to the
list (zlst) of z's is generated by the call to GENVIS at
C12,C23, using the imformation just described coming from
KITOGEN. Things are then ready for the function call
QLSIM(zlst,vist,sgnvist) at C14,C24. Here, sgnvist 1s a list
giving the initial sign to be assumed for the corresponding 's.
Thus, sgnvist = [pos] in C14 corresponds to the assumption
made in the runaway argument above that mtially 07T/
dr > 0. Using this information., QLSIM determines the
algebrac conditions needed to satisty the assumptions in
sgnvlist, and then qualitatively advances the system, using the
logtc iltustrated in the Enghish descniption above, developing
a state diagram describing the qualitative evolution. Each
state 1s characterized by the updated version of sgnvlst, and
the set of algebraic assumptions made to imply that sgnvlst.
At “l-cycle.zasmpls, . . .7 following C14, QLSIM notes that
the oniginal state maps into itself, 1.¢., that the onginal growth
assumed for T implies indefinitely-continued growth, so the
state diagram for this qualitative simulation has only a single
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state, the node gindl, displayed by WRTREE in CI15. The
first element ([pos]) there 1s the sign of tt for that state, and
the second 1s the algebraic expression which must be positive
in order for that sign to hold. Thus, QLSIM has found the
critical value in T (tt) needed for 1ignition/runaway for this
model.

The state diagram for system (1), displayed at C25, is
somewhat more interesting. There are four states, corres-
ponding to the sequential advance of the SHO-system
through the tour quadrants in (x, p) space on one cycle of its
tamihar elliptical orbut.

It 1s expected that facilities such as these for quahtative
analysis will considerably expand both the range of problems
PAP can successfully analyse, as well as the efficiency and
range of PAP’s ability to communicate with the human user
In & convenment manner. For example, 1t should be feasible
to permit the user to qualitatively communicate to PAP a
description of some physical process via an argument like the
one given for the thermal runaway process, and then to have
PAP try to fill in the details of the argument, and to check 1f
the argument “makes sense”’, using the facilities KITOGEN
and QLSIM. The transport calculation described in the fol-
lowing section shows some other ways in which the routines
just described are usetul.

4. An automated transport calculation

We have seen above how the PAP-K B can be used to apply
known results to new sets of parameters. For example, using
NUMVAL, we evaluated the banana-dnft diffusion coef-
ficient D, for alpha parameters. However (as may also be
verified using NUMVAL on the validity requirements in the
K B), the standard result evaluated there does not apply to
alphas, because its derivation assumes that the grad-B contri-
bution g to the precessional drift 1s negligible compared with
the £ x B contribution g, while actually Q; < Q; holds
for alphas. The high-level calculator (CALC) whose oper-
ation 18 illustrated in this section has the potential for gener-
ating results which are ““new’” in the more profound sense of
having a difterent analytic form, and, to some extent, of requir-
ing a different solution approach, from other results. At the
present early stage of implementation and experimentation,
PAP has recovered some known transport results (including
the standard D,,, result discussed here), but no new ones.
However, we see no intrinsic obstacle to 1ts being able to gen-
erate something new (such as a form for Dy, valid for alphas).
A tuller description of this calculation 1s given in Ref. [1].

CALC uses an evaluation procedure simmlar to NUMVAL,
except that it uses the more flexible and refined solution
net approach provided by KITOGEN in the “downward”,
information-gathering portion of its evaluation. The solution
net corresponding to the calculation 1s shown in Fig. 4. The
PAP/user interaction is given in the protocol of Appendix A.

PAP i1s instructed to calculate the radial flux, “‘gamr™ (nd|
in Fig. 4) by the function call CALC(gamr). Under the
“gtvenby” property of gamr, CALC finds the algebraic
expression (nd2 in Fig. 4)

gamr = int(aap*rdt*f.[th,y].[0,1ndef].[2* Yo p1,indet]), (3a)
or 1n non-computerized algebraic notation
[, = |7 do|dy 4%, (3b)
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(ndl) J
q.mw
{nd2)
tnt{ )
v v
(nd3) {nd4) ( 5) (nd6) {nd?)
sap f rat y th
\ i KN £
\ (nd10) (ndB) !
\ solvefor{ ) vh*ain{ih) (,f

\

¥ i I— { E‘ {
[{M!SJ J i mm)fzmt.?] (nd11) (ndg}\ """"" -
Deepl *f) auh vh

ndlﬁ} (nd17) (nd18)
apl {1
L

{ndzm {mw) AR
sotvefor { 10) (nd3 6, '? 12-14) | solvefor( 1) {nd%,6,7,9,11-14,16)

. ™
( (nd21) J
T10eep2¥1}
¥ ‘ i ¥
[ {nd22) [WH) {nd2 4
10 ep2 fi1
A
l . l o\

(nd26) (nd253 )

\
] ™
- } I\ \J
Fig. 4. Solution network generated by PAP in doing the transport calcu-
lation discussed 1in Section 4.

",
______ —

This is a representative form for the radial flux. Here, 0 s
the poloidal azimuth, y 1s a pitch-angle variable, 7 1s the
particle radial drift velocity, A4 1s a function of y, giving the
proper phase-space Jacobian, with 4° its derivative, and [ 1s
the particle distribution function.

The solution-net development proceeds downward from
node ndl as previously described, until nodes such as nd10,
which has as its value SOLVEFOR(boltzeqa, ), which signi-
fies a further task which must be performed. This value is
just the function call which 1s made in order to accomplish
the task. The entrance into the SOLVEFOR attempt is
announced following C4 1n Appendix A, first for £, and later
on for the terms 0, f1, f10, and f11 which PAP creates in
altempting a perturbative solution for .

The function call SOLVEFOR (eq, v) attempts to solve
equation eq for varniable v. For a (currently rather limited)
range of algebraic equations, integral equations, o.d.e.s and
p.d.e.s, it will successfully solve eq and return the result. The
messages ““homog-fO-type-de™ and “slvlitm™ appearing 1n
App. A following the announcements ““solvefor (f0, f10, f11)”
are instances of such outright solution responses.

In addition to recognizing those equations 1t can solve
outright (for which it returns an answer) and those it cannot
solve, for some equations, SOLVEFOR recognizes a situ-
ation in which a perturbative solution might prove successful.
In Appendix A this occurs following the announcements
“solvetor (1.7 We focus on the protocol following “*solvefor
i for definiteness.

Performing its analysts of the type of equation given
it, SOLVEFOR concludes 1t 1s one of the d.e.s it cannot
currently solve outright, and prints ““other de type™ to denote
this. With “consider ordening on . . . .77 it then attempts to
solve boltzeqa by perturbative means. In this effort (occur-
ring within the “ordering-suggesting” function ORDRSUG),
PAP makes use of the HEURMAP and NUMVAL routines
described above. as well as requesting information from the
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user. These requests from ORDRSUG are the only portion of
the calculation presently requiring user decisions.

First, ORDRSUG applies HEURMAP to each term in
boltzeqa, drawing on the KB for the appropriate scale lengths
with which to hll out rptist. The result is given in the list
following “‘term scalings™. Next, at “‘num ratios”, NUMVAL
1s applied to the ratio of each element 1n that list to the first
element, agatn using the KB to provide those values it already
knows. At this point, the user 1s told which values are as yet
unknown, and 1s given the option of further specifying those
values, or proceeding to the decision, based on this list of the
size of the terms in the equation, of how to order them.

At “give eplstl,” the user specihes the ordering of the
terms in boltzeqa. Each element of boltzeqa 1s multiplied by
the corresponding element of eplstl. The parameter epl is
then treated as small, so the eplst]l shown corresponds to the
usual assumption that the radial extent of the collisionless
orbits 1s small compared with the minor radius of the confine-
ment device. From the mechanized portions of ORDRSUG

just described, or some extension of them, 1t should not be

difficult to have PAP generate eplstl, or at least suggest one,
but at present this has not been done.

Once given eplstl, the rest of the ordering process is
automatic. f1s expressed as an expansion to some specified
order n epl, this 1s inserted into boltzeqa, and the appro-
priate hierarchy (“eqhier="" below) of kinetic equations to
solve 1s generated (in the function GENEQHIER, whose
name 1s announced in Appendix A). The value returned by
SOLVEFOR here ts:

[F = EP]1 F1 + FO, INWHICH, [XPNPARM = EPI],
F
1FO ( dd (AA le;) )) NUH
EQHIER = | T THDT — b = (.
d dF1
dFl THDT A dF0 RDT W(AA av =
dTH " dR ' AAP = Ul

This may be read “The result 1s f = f, 4+ ¢, f,(+ higher
order terms, if needed), IN WHICH the expansion parameter
1S &, and the newly-introduced variables f,, f, are found by
solving the corresponding equations given 1n eghier.”” When
PAP receives a response of this form from SOLVEFOR, it
creates new subtasks (nodes nd16,nd18 in Fig. 4) of the same
torm as the earlier problem (node nd4) of computing f.

Note that this represents an incremental increase of the
KB. Instead of the new knowledge being “taught” to PAP by
the user, the possibility for which was indicated in Section 3,
here 1t ts PAP itself which has generated the new knowledge
increment. The kinetic equations generated by ORDRSUG
are associated with the variables £, and f, created by PAP in
the same manner as boltzega 1s assoctated with the member

fof the permanent KB. This untformity in the representation

ot newly-developed and permanent information will permit
PAP to be able to operate on them 1n a untfied fashion, and
will factlitate the incorporation of new results into the KB,
1.€., “learning” [10-12]. This uniformity 1s part of the general
destgn philosophy for PAP, and provides constraints on the
representation of both information in the KB, as well as
output from PAP’s routines.

Continuing with the calculation, at nd20 PAP applies
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SOLVEFOR to /,, and finds that this 1s an equation 1t can
solve outright. For /, (nd19), it instead finds that 1t must try
to induce a second ordering, invoking ORDRSUG as before.
This time the ordering 15 tn ep2 (&), which determines the
collistonality regime one 1s interested . Here, an analysis of
the type tnduced by ORDRSUG 15 inconclusive on whether
the collisional (3rd) term 1in boltzega should be ordered large
or small compared with the precessional (1st) term. This 1s to
be expected, because realistic devices can operate in differing
collisionality regimes. Indeed, the transport hterature can
with some vahidity be viewed as a search through the space of
possible relative orderings of the terms in the full kinetic
equation consistent with reasonable parameter values, in
which conceptually the same calculation 1s done for each
ordering. Here, PAP could be instructed to investigate a
particular ordering, or all reasonable ones. The term “‘reason-
able™ 1s not a clearly defined one, of course. The assumption
Q. < Q, was not “reasonable’” for the transport of thermal
particles (the context in which this theory was developed), but
becomes s0 for alphas. In Appendix A, the choice made is to
order the collision frequency small. The calculation is thus of
the same class of calculations as the tokamak banana regime
[4]. the precession-dominant banana-dnft regime [3], and the
superbanana regime in rippled tokamaks [13] and stellarators
114, 15], the hallmark of which is a diffusion coeflicient linear
in the effective collision frequency, here called nuh (vy,). The
assumption made by PAP 1n the present calculation, that thdt
(0} is independent of § and y, makes it most closely analogous
to the banana-drift calculation of Ref. [3}, and that result may
be recovered from the result generated by PAP here, with the
appropriate expression substituted for vb. For all these cal-
culations, however, most of the solution tree of Fig. 2 is valid,
giving a more concrete formal meaning to the general state-
ment that all the calculations are ““conceptually similar”. By
using such solution trees stored 1n its KB to direct its approach
to problems not previously attempted, it s hoped that PAP
will be able to apply analogical reasoning {16-18] to apply
solution approaches known to be effective for previously-
treated problems to new problems of similar character.

[n D4 1in Appendix A, the answer for gamr is first given
formally, leaving the function INT unevaluated. INT is
evaluated, where possible, by the application to the formal
result of INTEV, in C5.D5.

A human theorist would usually collect the two terms
appearing 1 the integrand in D5 into one. Because of
the operation of the MACSYMA function DIFF and
INTEGRATE which it uses, the function INTEV leaves the
result 1n the less than optimal form shown. Improvements in
making decisions of this sort in doing formal algebraic man-
ipulations would be useful for MACSYMA and MACSYMA.-
hke facihties.

When the collisional term 15 ordered large instead of
small at nd19, e, if epistl = [l,ep2,1.1] instead of the
value [1.1.ep2 1] 1s taken in Appendix A, PAP undertakes
a calculation of the " 1/v"” variety, also familiar from rippled
tokamaks [3, 19] and stellarators [20]. PAP recovers the
stellarator result, except that 1t as yet has no ability to reason
about the appropriate boundary conditions in y, thus leaving
the y-integration indefinite.

8. Conclusion

The possibilities tor a facility like PAP for enhancing the
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learning environment and research productivity for plasma
physicists seem considerable. In response to the two questions
put 1n the Introduction, even at its present early stage of
implementation, the lower-level facilities have already begun
to be useful. With regard to developing “new” results, as |
have attempted to Hlustrate by the automated transport cal-
culation just described, most of what goes into new physics
calculations 15 not new. What is new 1s often largely the new
pattern in which known techniques and results are combined,
Thus, the prospects for making PAP useful even at this more
ambitious level also seemn promising.
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Appendix A
(Cd)calc(gamr);

solvefor F
other de type

. . d . .
constder ordering on EE SIN(TH} VB +

dF _.
T
dTH Hbt

d dF
) (77 (AA =) I\fUH »
AAP -

: TH) V
i SIN(ATH) B- I KPTH THDT,

, O]

term scalings: |

2 AA F KPY° NUH
AAP

A THDT
SIN(TH) VB’

3.4994B-13 A AA DENSI
AAP DL SQRT(MASS) SIN(TH) TT' **'VRB"

0.0B0}

unevaled parms: [A, TH, THDT, VB, AA, AAP, DENSI.
DL, MASS, TT]

give values, or continue — usr ordr

continue:

give eplst |

lep!l.1,1.1];

genegheir

num ratios {1,

solvetor FO
homog-{0-type de

solvefor F 1
other de type

dFO dF'!
‘onsid dering on —— SIN(TH) VB —
consider ordering on R IN(TH) - TTH THDT
d dF | .
(a—? (AA E—,;;-}) NUH .
AAP

. FO SIN(TH) VB _
term scalings: [- - ;l B FIKPTH THDT,

AAP ...... ., 0']
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A FI THDT
FO SIN(TH)} VB

num ratios |1,

3.4994B-13 A AA DENSI FI 0.080)
AAP DL FO SQRT(MASS) SIN(TH) TT-4*0 yB*

dFO d°VB

(DS) INT(%PI AA EPI EP2 —— NUH VB —

dY
dAA dF0 dVB

+ %PI EPI EP2 —— NUH VB —— | Y)/THDT?

dY dR dY

unevaled parms: [A, FO, FI1. TH, THDT, VB, AA, AAP, References

DENSI, DL, MASS, TT]

give values, or continue — usr ordr
continue;

give eplsti
[1,1.ep2,1];
geneqherr

solvefor FI10
slvitm

solvefor F11
slvitm

(D4) INT(AAP SIN(TH) VB (EP! (EP2
INT

dFO
—= SIN(TH) VB

d d _
(NUH (=5 (AA (5 (INT( , TH)))))

THDT

AAP THDT
TH)

dFo0
dR

SIN(TH) VB
+ INT (

AT TH) + FO, [TH, Y],

10, INDEF], [2%PI, INDEF))
(CS) intev(%);
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